
 8305 Catamaran Circle

Lakewood Ranch, FL

Page 1 of 9

AN2505 – CIGI Symbol Drawing

March 2025

Copyright (c) 2014-2025 Battlespace Simulations. All rights reserved.

Battlespace Simulations, Modern Air Combat Environment, and the MACE and BSI logo are registered
trademarks of Battlespace Simulations.

Battlespace Simulations

8305 Catamaran Circle

Lakewood Ranch, FL 34202

If you have questions or comments, please contact us at support@bssim.com.

mailto:support@bssim.com

 8305 Catamaran Circle

Lakewood Ranch, FL

Page 2 of 9

Overview

AN2505 – CIGI Symbol Drawing

This is a guide to creating MACE Plugins that can draw CIGI symbols in ARMOR, using the
new Symbols Library available in MACE 2025R1. The main use cases of creating these
plugins will be creating new Heads-Up-Displays (HUDs), On-Screen Displays (OSDs), Sensor
Overlays, or overlays specific to Emulated Military Equipment (EME).

Contents

• Library Basics

• Intro

• Setup Code

• Symbol Creation

• Update Method

• Cleaning Up

• Symbols

• Plugin Template

• Helpful Tips

Library Basics

Intro

The Symbols library manages all aspects of drawing symbols over CIGI. It uses CIGI 4.0, and
any IG should be compatible. However, we have developed this with ARMOR in mind.

Compliant with CIGI, Symbols are drawn on a Surface. Surfaces can either be attached to a
CIGI View, or attached to an entity, specified by a View ID or an Entity ID respectively.
Surfaces attached to Views are displayed as overlays, and Surfaces attached to Entities are
positioned in world-space. Entity attached Surfaces can also optionally be billboarded, or
set to appear with a fixed size. View attached Surfaces can be sized with either Fixed, Fit, or
Expand. The IntelliSense comments describe Surface properties in detail.

At the loweset level, each symbol created must have a parent. Parents of symbols can be a
Surface, an invisible anchor symbol (type Symbol [see below]), or another symbol. Top level
symbols should be children of the Surface. The parent is passed into the symbol
constructor. Calling the constructor of a symbol creates the symbol and adds it to the
symbol system, so no code is required to add the new symbol to a collection or manage
them directly during the lifetime of the overlay. They will be updated as required by the
symbol system when the underlying symbol changes.

A Symbol itself is a blank, non-rendered item which can be used to help manage the symbol
hierarchy. (i.e. defining a Symbol uses an ID and costs a little in network transmission and
management, but has no meshing or rendering cost). Symbols are commonly used with a

 8305 Catamaran Circle

Lakewood Ranch, FL

Page 3 of 9

collection of child symbols each with relative positions and/or rotations, and then the
whole group can be manipulated by simply adjusting the parent symbol.

Setup Code

[!WARNING] This example code assumes familiarity with MACE plugins, and also
assumes that a MACE plugin has already been created and configured correctly.

First, a SymbolManager needs creating at plugin initialization:

_manager = SymbolSystem.Instance.CreateManager(1000);

Store a reference to this manager as a field, as we will need to access it throughout.

To create symbols, we need to first create the surface, passing the manager in:

_surface = new Surface(_manager);

Specify the properties of the surface, either using View or Entity attachment:

// View attach
_surface.AttachType = SurfaceAttachType.ViewAttached;
_surface.SizingMode = SurfaceSizingMode.Fit;
_surface.ViewID = 1;

// Entity attach
_surface.AttachType = SurfaceAttachType.EntityAttached;
_surface.EntityID = 0; // TODO get Entity ID
// Optional
_surface.Billboard = false;
_surface.PerspectiveGrowth = false;

Symbol Creation

Now, symbols can be created.

It is good practice to first define some screen anchors, using homogeneous positions. Here,
we define 9 different anchors around the screen-space (as top level symbols, with the
surface as the parent), although in practice only the anchor positions you actually need
should be created.

Symbol botLeft = new Symbol(_surface);
botLeft.UseHomogeneousPosition = true;
botLeft.HomogeneousPosition = new Vector2(0f, 0f);

Symbol centreLeft = new Symbol(_surface);
centreLeft.UseHomogeneousPosition = true;
centreLeft.HomogeneousPosition = new Vector2(0f, 0.5f);

Symbol topLeft = new Symbol(_surface);
topLeft.UseHomogeneousPosition = true;
topLeft.HomogeneousPosition = new Vector2(0f, 1f);

 8305 Catamaran Circle

Lakewood Ranch, FL

Page 4 of 9

Symbol topCentre = new Symbol(_surface);
topCentre.UseHomogeneousPosition = true;
topCentre.HomogeneousPosition = new Vector2(0.5f, 1f);

Symbol topRight = new Symbol(_surface);
topRight.UseHomogeneousPosition = true;
topRight.HomogeneousPosition = new Vector2(1f, 1f);

Symbol centreRight = new Symbol(_surface);
centreRight.UseHomogeneousPosition = true;
centreRight.HomogeneousPosition = new Vector2(1f, 0.5f);

Symbol botRight = new Symbol(_surface);
botRight.UseHomogeneousPosition = true;
botRight.HomogeneousPosition = new Vector2(1f, 0f);

Symbol botCentre = new Symbol(_surface);
botCentre.UseHomogeneousPosition = true;
botCentre.HomogeneousPosition = new Vector2(0.5f, 0f);

Symbol centre = new Symbol(_surface);
centre.UseHomogeneousPosition = true;
centre.HomogeneousPosition = new Vector2(0.5f, 0.5f);

Symbols can now be created as children of these anchors, and positioned relatively to the
anchors. Here is an example crosshair:

Circle crosshairCentre = new Circle(centre);
crosshairCentre.Position = new Vector2(0, 0);
crosshairCentre.Radius = 4;
crosshairCentre.Filled = false;
crosshairCentre.Color = _defaultColor;
crosshairCentre.LineWidth = 2;

Polygon crosshair = new Polygon(centre);
crosshair.PrimitiveType = PolygonPrimitiveType.Line;
crosshair.Position = new Vector2(0, 0);
crosshair.Points.Add(new Vector2(0, 50));
crosshair.Points.Add(new Vector2(0, 150));
crosshair.Points.Add(new Vector2(0, -50));
crosshair.Points.Add(new Vector2(0, -150));
crosshair.Points.Add(new Vector2(50, 0));
crosshair.Points.Add(new Vector2(150, 0));
crosshair.Points.Add(new Vector2(-50, 0));
crosshair.Points.Add(new Vector2(-150, 0));
crosshair.Color = _defaultColor;
crosshair.LineWidth = 2;

 8305 Catamaran Circle

Lakewood Ranch, FL

Page 5 of 9

It can sometimes be helpful to make utility methods when lots of symbols have similar
properties that need to be set. Here is an example of a method to create a text label symbol,
using a default color field and default parameters for font size and font style so that we
don’t have to specify these every time we want to display some text:

private readonly Color _defaultColor = new Color(0, 255, 0, 255);

private Label CreateLabelSymbol(
 HierarchyItem parent,
 string text,
 Vector2 relativePosition,
 TextAlignment textAlignment,
 float fontSize = 28,
 FontStyle fontStyle = FontStyle.MonospacedSansSerifBold)
{
 Label label = new Label(parent);
 label.Text = text;
 label.Position = relativePosition;
 label.Color = _defaultColor;
 label.FontSize = fontSize;
 label.FontStyle = fontStyle;
 label.Alignment = textAlignment;
 return label;
}

A mission time label can be created using this utility method. Note that we are storing this
symbol as a field. This is because we will need to update the text of this field later (as the
mission time changes), whereas a crosshair does not require any runtime updates.

_missionTimeLabel = CreateLabelSymbol(topRight, "00:00:00",
 new Vector2(-100, -50), TextAlignment.MiddleCenter, 24);

Update Method

We need an update method to be called regularly. This is recommended to be called from a
handler for the MACE API AllMotionComplete event.

This method should first update any symbols that need updating (mission time label, in our
example), and then call Update on the Symbols Manager. The Update method on the
Symbols Manager should always be called regularly.

public void Update()
{
 UpdateData();
 _manager.Update();
}

private void UpdateData()
{
 if (_missionTimeLabel != null)

 8305 Catamaran Circle

Lakewood Ranch, FL

Page 6 of 9

 {
 _missionTimeLabel.Text =
_mission.MissionTime.ToString("HH:mm:ss");
 }
 // TODO update other symbols here...
}

When updating Symbols that draw on screen, such a Rectangle, Circle, Triangle, and
Polygon, it is preferable to favor changing Position and Rotation over modifying the
points in the shape directly; changing points requires the entire symbol to be retransmitted
via CIGI, and the IG-side representation to re-mesh the symbol. This can be very expensive
if done every frame and is frequently not necessary.

Additionally, it’s efficient to draw multiple lines as a single symbol, but only if the points do
not change. If splitting a symbol would help allow the above rule about managing the shape
with position and rotation vice recalculated points to be maintained, this will be the most
performant solution.

Cleaning Up

On shut down, or when we want to deactivate our symbols, we can simply destroy our
surface. However, we need to make sure to call Update on the manager afterwards.

public void CleanupSymbols()
{
 _surface?.Destroy();
 _manager?.Update();
}

Symbols
Symbol Name Description Some Useful Properties

Symbol A base class for all symbols.
If used directly, will behave
as an anchor that is never
rendered but obeys all
hierarchy and control
behaviors.Useful to use as a
parent to other symbols

PositionRotationScaleUseHo
mogeneousPositionHomoge
neousPosition

Circle A circle.Can be filled or
unfilled, and can also contain
an inner circle to make a
“donut” shape.Can also be an
arc by specifying a start and
end angle (counter-
clockwise)

RadiusInnerRadiusStartAngl
eEndAngleFilledLineWidthSt
ipplePatternStipplePatternL
ength

MultiCircle A symbol that contains
multiple circles.

 8305 Catamaran Circle

Lakewood Ranch, FL

Page 7 of 9

Symbol Name Description Some Useful Properties

Polygon A general polygon symbol,
defined by points.This
symbol is best used for
drawing points, lines or
unusual
shapes.PrimitiveType of
Line List or Line Loop can be
used to draw multiple lines
using one symbol, which is
more efficient than using
multiple symbols.

PrimitiveTypePointsLineWi
dthStipplePatternStipplePatt
ernLength

Triangle A variant of Polygon.Can be
filled or
unfilled.TriangleStyle can be
used to specify fill type, and
Chevron can also be
selected.PrimitiveType can
be set to TriangleStrip or
TriangleFan to draw
multiple connected triangles.
TriangleStrip forms triangles
by reusing the last two
vertices, and TriangleFan
forms triangles by reusing
the first vertex.

PrimitiveTypeTriangleStyleP
ivotSize

Rectangle A variant of Polygon.Can be
filled or unfilled.

PivotSizeUseHomogeneousSi
zeHomogeneousSize

Label A symbol to draw text. TextTextAlignmentTextOrie
ntationFontIDFontStyleFont
Size

 8305 Catamaran Circle

Lakewood Ranch, FL

Page 8 of 9

 8305 Catamaran Circle

Lakewood Ranch, FL

Page 9 of 9

Plugin Template

A MACE Plugin template utilizing the symbol library is available for download from
downloads.bssim.com.

Helpful Tips
• It is more efficient to draw multiple lines as a single symbol, rather than a symbol

for each line. Each line is defined by a pair of points. For an example of this, see the
crosshair example above.

• For multi-line text, it is advised to have each line as a separate Label symbol.
However, the multiple Label symbols can be parented to a common anchor.

